Washington Connected Landscapes Project: Climate-Gradient Corridor Analysis

Meade Krosby, Tristan Nuñez, Lynn Helbrecht, Darren Kavanagh, Joshua Lawler, Brad McRae, John Pierce, Peter Singleton, Joshua Tewksbury

Talk Outline

Climate Gradient Corridor analysis and products

II. Utility of the analysis for NCAP

- III. Potential future analyses for synthesis
 - and interpretation

.

Species are already moving....

 Upward (~6m / decade) and poleward (~6km / decade)

(Parmesan & Yohe 2003)

....and will need to move farther and faster as climate change accelerates

<section-header><section-header><list-item><list-item><list-item><list-item>

A pathway through a changing climate

-Connect warm areas to cool -Avoid areas of heavy land use

A pathway through a changing climate

<text>

Link large, natural patches of land

- Patches in "natural" land cover
- Patches larger than 10,000 acres in size

Link patches that differ in temperature

- Patches that differ by more than >1°C
- Temperature data:
 - 30-year average of Mean Annual Temperature (1971-2000)

Link patches that are relatively nearby

• Patches that are < 50 km apart from each other

<section-header><section-header><section-header><figure>

Climate Gradient Corridor Network

It is best to think of Climate Gradient Corridors as representing "Connectivity Zones"

Take-home points:

- Connectivity will be critical for range shifts, but where & how individual species will move is highly uncertain
- Gradient approach requires relatively few assumptions
- Gradients can work in either direction (and can be modeled for precip, moisture deficit, other variables)

Take-home points:

- Connectivity will be critical for range shifts, but where & how individual species will move is highly uncertain
- Gradient approach requires relatively few assumptions
- Gradients can work in either direction (and can be modeled for precip, moisture deficit, other variables)
- Best used for coarse-scale, landscape-level planning
- Automated GIS tools on the way

Implications for species distributions

- New species moving in
- Alpine species moving out

Potential Additional Analyses for Synthesis and Interpretation

- Re-running the model
 - With finer scale LI layers
 - Within large cores
- Overlaying with focal species layers
 - Guilds
 - Single species
- Overlaying with other relevant map layers
 - Land ownership/conservation status
 - Riparian or other landcover layers

Acknowledgements

Washington Wildlife Habitat Connectivity Working Group

Climate Change Subgroup:

 Tristan Nuñez, Lynn Helbrecht, Joshua Lawler, Brad McRae, John Pierce, Peter Singleton, Joshua Tewksbury, Darren Kavanagh

Funding

- Wilburforce Foundation
- DOI Great Northern and North Pacific Landscape Conservation Cooperatives
- Wildlife Conservation Society's Wildlife Action Opportunities Fund

Check out:

- Online tools, reports, and thesis at www.waconnected.org
- Online maps at Databasin.org